Univerza *v Ljubljani*

Machine perception Introduction

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani

About the lecturer

- Name: Matej Kristan
- Where to find me: 2nd floor, ViCoS
 (not in office, in the lab most of time)
- Online contacts and resources:
 - <a>www.vicos.fri.uni-lj.si/matejk
 - <u>ResearchGate</u>
 - Google Scholar
 - eclassroom (https://ucilnica.fri.uni-lj.si/)
 - mail:matej.kristan@fri.uni-lj.si

1. Industrial vision

2. Deep structured models

3. Robotic vision

4. Visual object tracking

Lectures regime

- Lectures will be in-person in class
- If we go fully online, the lectures will be streamed via MS Teams (Machine Perception channel)
- I've added you to the Teams Machine Perception channel.
- If you feel unwell, don't attend the physical lecture. Last years recordings will be available on Streams (not exact copy of this year's).
 - Will be made available upon request

Practicum (2-week long guided projects)

- Guided by:
 - mag. Jon Natanel Muhovič (jon.muhovic@fri.uni-lj.si)
 - Marko Rus
- Practice the theory covered in lectures
- Mostly implementation-oriented
 - *Result is a working source code (Python)*
- Two-week assignments:
 - 1 week consultation (bug the assistants!!)
 - 1 week defense (have to defend in your assigned slot!)
- Practicum starts in the week 11.10. 15.10.

Start planned: 2nd week Details at the lab.

Lab regime

• The lab will take place in person & online

To cater to those who would like to attend

the assignments online, we will set some of the slots to online.

- At break: go to the e-classroom and fill out the pole about online/in-• person preferences Written exam info in case the exam is online: [exam date: tba]
 - Installation guideline and exam protocol (read carefully!)
 - The current exam Key (available ~30min before the exam ; CAUTION -- write it down on a piece of paper, and do not leave exam.net upon entering the key): tba
 - Zoom link for the exam (open in your smart phone): tba

Questionaire about online/physical attendance of assignments

Requirements of the course

- Practicum (programming assignments) > 50% each assignment evaluated during the semester (deadlines!)
- 2. Written exam > 50%

Cannot access the written exam without passing the lab. Content: lab assignments + lectures

3. Oral exam:

Not necessary if written >X%

(Will depend on class attendance and progress at assignments)

Machine perception examples – fast-forward

WACV 2016, PAMI2013

Lukežič, Muhovič, Strgar, Čehovin, Kristan 2015

What is machine perception about?

- Building machines that perceive their environment
- Digitalize environment through sensors

21

- Image of light, ultrasound, force field, etc.
- Perception through images: Computer vision

Development of Computer Vision

• Origins: 1950-1965 as side project at MIT:

"...building perceiving machines would take about a decade..."

Development paced by hardware development (numerical maths)

First multipurpose comps (UNIVAC ~1951)

~50 years

Embedded computers (ARM ~2001)

Face detection

Graphic processing units (GPU ~2016)

Instance segmentation

Human vs. Computer vision

- Much harder than it looks...
- Neuroscience: >50% brain dedicated to vision*

*Prof. Cornelia Fermueller ,University of Maryland in College Park

Human vs. Computer vision

- Much harder than it looks...
- Neuroscience: >50% brain dedicated to vision
- Humans apply experience (prior knowledge) What do you see?

The CV "tools": Algebra, Analysis Statistics Signal processing Machine learning Algorithms What do you see?

...

Modern industrial applications

Solar panel inspection

http://www.cognex.com

Smart cameras http://www.matrox.com

Car damage inspection

Vicos (http://www.vicos.si)

Modern autonomous vehicles applications

Boats:

(www.vicos.si/Projects/Viamaro)

Cars: (https://youtu.be/rPj4T1_gZ4; https://youtu.be/VG68SKoG7vE)

Modern visual query / AR applications

MS Hololens https://youtu.be/ihKUoZxNCIA

IKEA AR

https://youtu.be/ZDWRI9A1p6s

Topics covered in this course

Might change a bit...

- 1. Image processing 1
- 2. Image processing 2
- 3. Edge detection
- 4. Fitting parametric models
- 5. Local features
- 6. Camera geometry
- 7. Multiple-view geometry
- 8. Recognition & Detection

Literature

• The topics covered in lectures can be found in the following textbooks:

R. Szeliski,<u>Computer Vision: Algorithms and</u> <u>Applications</u>, 2010 Available online: <u>http://szeliski.org/Book/</u>

> David A. Forsyth, Jean Ponce, Computer Vision: A Modern Approach (2nd Edition) (first edition available online)

Simon J.D. Prince, <u>Computer Vision: Models</u>, <u>Learning</u>, and Inference, 2010 Available online: http://www.computervisionmodels.com/

> Considerable book collection: http://homepages.inf.ed.ac.uk/rbf/CVonline/books.htm

Literature

- Use the books for studying and solving the practicum assignments
- Lecture slides will be made available from the e-classroom
 - Hopefully a few days before the next lecture
- Slides are not books!
- You will need to make your own notes to properly follow the course

Crucial: *be proactive*

- Attend the lectures (online/physically) and make notes!
- Ask questions (in class and *especially at the practicum come prepared*)!